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1 Introduction and summary

Different phases of non-Abelian gauge field theories are already manifest in the Standard

model of elementary particle interactions, and charting the phase structure of these theories

as, for example, numbers of colours and quark flavours are varied is important for model

building beyond the Standard model, see e.g. [1]. In this regard, an especially interesting

class of theories are quantum field theories with nontrivial infrared fixed points of the β-

function. This means that while the coupling runs when probed at very short distances,

it becomes a constant over some energy range in the infrared and the theory appears

conformal. One of the phenomenological connections to these theories was provided in [2]

where the possibility of a fully conformal sector coupled only weakly to the Standard

Model through effective operators at low energies was considered. Conformal symmetry

determines the mass dimensions of these operators which have some striking implications

for the related low energy observables [3]. Recently theoretical aspects of these unparticles

have been further investigated in [4], where they have been considered as arising in a

natural way within a strongly coupled gauge theory.

Another phenomenological motivation to study theories which either feature an in-

frared fixed point or are, in theory space, close to one which does, originates from tech-

nicolor (TC) and the associated extended technicolor (ETC) models. These models were

devised a long time ago to explain the mass patterns of the Standard Model gauge bosons

and fundamental fermions without the need to introduce a fundamental scalar particle [5–

7]. The Higgs sector in these theories consists of a new fermion species (techniquarks),

charged under a new gauge interaction (technicolor). Early TC models, based on a tech-

nicolor sector straightforwardly extrapolated from a QCD-like strongly interacting theory,

had several problems. These include flavour changing neutral currents due to the extended

technicolor interactions and unwanted additional light pseudo-Goldstone bosons due to the

breaking of the chiral symmetry of the techniquarks. It has been known for some time that

these problems are solved in so called walking technicolor theories [8–10]. These theories

are nearly conformal, i.e. the evolution of the coupling constant is, in a wide range of

energy, governed by an attractive quasi-stable infrared fixed point at strong coupling.
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Several possible generic forms of a β-function are sketched in figure 1. The form of

the full nonperturbative β-function of a non-supersymmetric SU(N) gauge field theory

remains unknown to date1. Nevertheless, we can discuss the features shown in figure 1

by considering the perturbative β-function for SU(N) gauge field theory with fermions,

defined up to two loop order as

β(g) = −β0

g3

16π2
− β1

g5

(16π2)2
, (1.1)

where the coefficients are

β0 =
11

3
C2(G) − 4

3
T (R)Nf ,

β1 =
34

3
C2(G)2 − 20

3
C2(G)T (R)Nf − 4C2(R)T (R)Nf ,

and C2(R) is the second Casimir invariant for SU(N) representation R and δabT (R) =

tr(T a
RT

b
R). As is well known for QCD, for modest amount of matter in the fundamental rep-

resentation there is not enough screening to compensate for the antiscreening contribution

of the gluons and β(g) < 0, which guarantees asymptotic freedom. Perturbative β-function

becomes zero only in the ultraviolet fixed point at g = 0. However, imagine adding enough

matter in the fundamental representation to make β0 small and positive, while β1 becomes

negative. Then there appears a nontrivial zero, β(g∗) = 0 at g∗2 = −16π2β0/β1, and the

β-function is of the form shown by the dashed-dotted curve in figure 1. This zero corre-

sponds to an attractive infrared fixed point. If approached from the asymptotically free

side the theory becomes conformal, very unlike QCD, when long-wavelength probes are

considered. If g∗ is small, perturbative analysis can be applied [12]. However, it is more

likely that such infrared fixed points do not appear at perturbative values of the coupling

and one has to account for full nonperturbative dynamics of non-abelian gauge theories.

This can lead to the walking dynamics.

Namely, one has to take into account the formation of quark-antiquark condensate

leading to the spontaneous breaking of chiral symmetry, which decouples the quarks from

infrared dynamics and keeps the β-function negative. Therefore the β-function never ac-

tually reaches the would-be infrared fixed point, but the very close proximity to it allows

the coupling to “walk” slowly over a wide range of scales. Eventually the β-function is

repelled from the proximity of the fixed point and behaves as in a generic asymptotically

free theory, see figure 1. Another way to destabilize the infrared fixed point is to add small

explicit chiral symmetry breaking, e.g. a mass term for the fermions.

Therefore, there is need for concrete examples of theories with infrared stable fixed

points but not many concrete examples are currently known. For example N = 4 SYM

provides a concrete realization of a theory where the β-function vanishes identically as

was first shown on the two loop level in [13], and later to all orders in [14]. This theory,

however, is conformal at all scales and not just in the infrared. Supersymmetry provides

enough structure to allow for nonperturbative analysis and construction of theories which

1However, for a recent conjecture about its possible form, see [11]
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Figure 1. The schematic β-function of a theory with an infrared fixed point (dash-dotted line,

top), walking coupling (solid line, middle) and QCD-like running coupling (dashed line, below).

feature an infrared stable fixed point at which the β-function becomes zero and the running

coupling freezes to a constant value. Beyond supersymmetric cases [15], little is known in

full quantitative detail, and the reason is that this requires nonperturbative knowledge

which to date can only be obtained on the lattice.

On the other hand, analytic semi-quantitative studies of conformal windows have been

able to single out some viable candidates which should be studied in more detail using

lattice methods. In particular, for non-supersymmetric Yang-Mills theories with higher

fermion representations it has been suggested [16] that an ideal candidate for minimal

walking technicolor theory would be the one with just two (techni)quark flavours in two-

index symmetric representation of SU(2) or SU(3). Initial studies of these theories have

been performed on the lattice already [17–20]. For a related study of a QCD-like theory

with fundamental representation fermions see [21].

In this paper we consider the case of SU(2) gauge fields with two fermions in the

two-index symmetric representation, which, for SU(2), is equivalent to the adjoint repre-

sentation. We measure various correlators as functions of the fermion mass and lattice

coupling in order to obtain information on the spectrum of (techni)color singlet states

of this theory. The theory is discretised on the lattice using Wilson gauge action and

non-improved Wilson quarks. This theory has been studied on the lattice previously in

refs. [17, 18]; in comparison to these studies we use considerably larger range of lattice

volumes and different coupling constants, and we also measure masses of 3-fermion bound

states. We also make direct comparisons with results obtained with SU(2) gauge theory

with two flavours of fundamental representation fermions. This theory is known to possess

QCD-like running coupling and chiral symmetry breaking.

Naturally, the most direct way to answer the question concerning the behaviour of

the coupling constant in this theory would be to directly measure its evolution as the

scale is changed. Although this can be reliably measured on the lattice using e.g. the

Schrödinger functional method, care is needed in the interpretation of the results, and

we leave this analysis for further work. Here we will instead concentrate on the basic

– 3 –
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features of the theory, the lattice phase diagram and the physical excitation spectrum.

Even without direct knowledge of the behaviour of the coupling constant the possible

conformal behaviour can be characterised through other observables. In the conformal

theory, no massive bound states can exist, since the existence of a mass scale immediately

implies breaking of the conformal invariance. Hence, the spectrum of color singlet states

should provide first hints of the possible underlying conformal invariance. Furthermore,

regarding the possible conformal or walking behaviour it is important to understand the

onset of chiral symmetry breaking in these theories. To complement the initial studies [17],

we present high-precision results concerning the spectrum of the color singlet states in the

SU(2) gauge theory with two adjoint fermion flavours and discuss the implications this will

have on the possible conformal (or walking) behaviour.

More precisely, we investigate the following aspects of the system: firstly, we map out

the phase diagram of the theory on the plane of the bare lattice parameters (βL, κ), and

locate the line where the fermion mass vanishes. Because the fermion mass is additively

renormalised with Wilson fermions, the mass is measured using axial Ward indentity. It

turns out that at small inverse lattice coupling βL = 4/g2 the system has a rather strong

first order phase transition as the fermion mass is lowered. This prevents us from reaching

very small fermion masses at small βL. The line of first order transitions ends at around

βL ≈ 2, and at larger βL it is possible to reach the zero fermion mass limit. This behaviour is

observed to be independent of the lattice volumes used, indicating that the phase structure

persists at infinite volume. This also confirms earlier observations [18]. We remind here

that while the system has a continuum limit at βL → ∞ (asymptotic freedom), it may also

have a non-trivial fixed point at some finite value of βL.

Secondly, we investigate the chiral behaviour of the system as the technifermion mass

mQ is decreased. At small βL we observe clear signs of chiral symmetry breaking: the mass

of the pseudo-Goldstone pseudoscalar 2-fermion state, “pion”, behaves as m
1/2

Q , whereas

the masses of other states approach a constant value as mQ is lowered. This includes the

masses of 3-fermion states, which exist in this model. However, the first order transition at

small mQ prevents us from going to the chiral limit mQ → 0. This behaviour is especially

prominent near the critical βL ≈ 2. However, at βL >∼ 2 the behaviour is markedly different:

there we observe no clear signs of chiral symmetry breaking, and the masses of the two-

fermion pseudoscalar and vector states are almost degenerate. In this case all masses

are proportional to mQ, and no phase transition is encountered when mQ → 0 limit is

approached. As will be discussed below, the apparent lack of the chiral symmetry breaking

is consistent with the existence of an infrared fixed point somewhere near βL >∼ 2. If this

is the case, the small βL behaviour does not correspond to continuum physics.

However, this interpretation must be taken with a grain of salt, because the comparison

with the theory with fundamental representation fermions reveals qualitatively similar

behaviour: chiral symmetry breaking at small βL and apparent restoration of it at large

βL. However, now we know for sure that the system has QCD-like running coupling and

chiral symmetry breaking also at large βL. What happens is that at large βL the chiral scale

becomes much smaller than 1/a, the inverse lattice spacing. Thus, very large volumes, small

– 4 –



J
H
E
P
0
5
(
2
0
0
9
)
0
2
5

mQ ≪ 1/a and high accuracy are required to observe the chiral behaviour. Furthermore,

at large βL the system also may become effectively deconfined due to too small volume,

leading to effective restoration of the chiral symmetry. In this case the apparent chiral

symmetry restoration is a small-volume and too large mQ effect.

As will be described in detail below, for the adjoint representation fermion theory

it is very difficult to unambiguously distinguish between the above alternatives, and our

observations do not yet completely resolve the case. (Similar conclusions were obtained

for SU(3) gauge theory with 2-index symmetric fermions in ref. [19].) However, the results

suggest that the first alternative is favoured, i.e. the system has a genuine infrared fixed

point. In this case there must be a genuine transition between the small and large βL

behaviour at the endpoint of the first order transition line. In the second, “QCD-like”

alternative, the chiral symmetry restoration is a finite volume and resolution effect. In this

case the value of βL where the chiral symmetry appears to become restored should show

clear finite volume dependence. As shown below, the behaviour remains essentially the

same for volumes 104 and 244.

Thus, our results lend support to the earlier claims favouring the existence of the

infrared fixed point with associated conformal behaviour [18], by extending these studies to

much larger volumes. However, we also stress the ambiguities inherent in the interpretation

of the results based on the spectrum and chiral quantities. The direct evaluation of the

β-function is required to unambiguosly resolve the issue.

The paper is structured so that in section 2 we recall the basics of the model as well

as of the lattice formulation we use, in section 3 we present our results and interpretation

of the data and in section 4 we conclude and outline the directions of our future work.

2 The model and lattice formulation

The minimal model to be studied here consists of the gauge dynamics of two Dirac fermions

in the adjoint representation of the SU(2) gauge theory. This model has been proposed to

be (quasi)conformal with only two flavours of massless technifermions.

The continuum theory is defined by:

L = −1

2
FµνF

µν + u /Du + d /Dd (2.1)

where Fµν is the usual SU(2) field strength, and the gauge covariant derivative is

[Dµu]a =
(

∂µδ
ac − igTCA

b
µǫ

abc
)

uc, (2.2)

where a = 1, 2, 3.

Due to the pseudoreality of the SU(2) representations, the global symmetry group

of the above theory is SU(4), which breaks to SO(4) due to a formation of the fermion

condensate 〈uu + dd〉. This pattern leads to the appearance of nine Goldstone bosons.

If the above theory is taken to drive the electroweak symmetry breaking, i.e. coupled to

the electroweak SUL(2)×UY(1) gauge fields, three of these Goldstones will become the

longitudinal components of the weak gauge bosons, and the physical low energy spectrum

– 5 –
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is expected to contain six Goldstone bosons and these are furthermore expected to receive

masses of the order of the electroweak scale through, e.g. ETC interactions. Here we are

interested of the strong coupling properties of the SU(2) gauge theory and do not consider

the coupling to the electroweak.

We will study the masses of several (techni)color neutral states. In the adjoint theory

the spectrum is much richer than if fundamental representation fermions are considered.

Because the technigluons, quarks and antiquarks all transform in the same representation,

we can obtain gauge singlet states by combining two or more of any of the fields above.

The simplest to measure are meson-like states consisting of two quarks or a quark and an

antiquark. The three quark color neutral states can be constructed in analogy to baryons of

ordinary QCD, e.g. “proton” (spin-1/2) and “delta” (spin-3/2). Finally there are possible

exotic states like the color neutral combination of a techniquark and technigluon.

On the lattice the action is

Slat = SG + SF , (2.3)

with the standard Wilson plaquette action

SG = βL

∑

x;µ<ν

[

1 − 1

2
TrPx;µν

]

, (2.4)

where Pµν is the standard 1 × 1 plaquette, written in terms of the SU(2) fundamental

representation link matrices Uµ(x). The Wilson fermion action, SF , for two (degenerate)

Dirac fermions in the adjoint representation of the gauge group is

SF =
∑

f=u,d

∑

x,y

ψ̄f,xMxyψf,y, (2.5)

where

Mxy = δxy − κ
∑

µ

[

(1 + γµ)Vx,µ + (1 − γµ)V T
x−µ,µ

]

. (2.6)

The only modification to the usual Wilson action for fundamental fermions is the replace-

ment of the link variables Uµ(x) with the variables

V ab
µ (x) = 2tr(SaUµ(x)SbU †

µ(x)), (2.7)

where Sa a = 1, 2, 3 are the generators of the fundamental representation, normalised as

TrSaSb = 1
2
δab. The elements of V -matrices are real and V −1 = V T . We note that

because the link matrices are real, it would be possible to perform lattice simulations with

two Dirac flavours of staggered fermions without encountering the square root problem (for

an example, see [22]).

The lattice action is parametrised with two dimensionless parameters, βL = 4/g2
bare

and κ = 1/[8 + 2(amq,bare)]. The parameter κ is related to the quark mass. Because the

Wilson fermion action breaks the chiral symmetry of the (massless) continuum theory, the

bare quark mass receives large additive corrections, and we cannot avoid the inclusion of

– 6 –
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the mass term in the lattice action. The physical (PCAC) quark mass is defined through

the flavour non-diagonal axial Ward identity

mQ = lim
t→∞

1

2

∂tVAP

VPP

, (2.8)

where the pseudoscalar-pseudoscalar and axial-pseudoscalar currents are as follows:

VPP(t) =
∑

x,y

〈d̄(x, t)γ5u(x, t)d̄(y, 0)γ5d(0, 0)〉 (2.9)

VAP(t) =
∑

x,y

〈d̄(x, t)γ0γ5d(x, t)d̄(y, 0)γ5d(0, 0)〉. (2.10)

Here and below we use wall sources with Coulomb gauge fixing in all our hadronic corre-

lation functions. For each βL the value of the hopping parameter κ where mQ vanishes

defines the critical hopping parameter κc(βL). In practice we use a few t-values around

t = Lt/2 for the fit in eq. (2.8).

The Wilson quark action (2.5) has O(a) discretisation errors, which could be elimi-

nated by employing the O(a) improved “clover” action. However, to fully implement O(a)

improvement would substantially increase the complexity of the simulation program and

require careful renormalisation of various quantities. Thus, the lowest-order accuracy is

justified in exploratory investigation as is the case here. The simulations are performed

with the hybrid Monte Carlo algorithm, using even-odd preconditioned quark matrix and

leapfrog integrator. The quark matrix is inverted using the standard conjugate gradi-

ent method.

The masses of colour singlet “hadrons” are estimated by fits to the time sliced averaged

correlation functions with Coulomb gauge fixed wall sources. We concentrate only on

flavour non-diagonal (isospin non-singlet) operators. For example, the correlation function

for quark-antiquark states, “mesons,” is given by

GX(t) =
∑

x,y

〈ū(x, t)ΓXd(x, t)d̄(y, 0)ΓXu(0, 0)〉, (2.11)

where ΓX = γ5 for the pseudoscalar and ΓX = γi, i = 1, 2, 3 for the vector meson. We

also measured scalar (ΓX = 1) and axial vector (ΓX = γ5γi) correlators, but for these

the statistical errors remain too large for reliable results. Except for the isosinglet channel,

states consisting of two quarks are degenerate with the quark-antiquark states in eq. (2.11).

The correlation functions for three quark states, spin-1/2 “proton” and spin-3/2 “∆”,

are constructed in analogous fashion to standard SU(3) QCD. We also made an attempt

to measure the correlation function of the colour singlet quark-gluon state; however, we

did not succeed in constructing a source operator without excessive statistical noise for

measuring the mass.

3 Results

The simulations were carried out with five different values of βL = 1.3, 1.7, 1.9, 2.2 and

2.5. For each value of βL we used 5 to 11 different values of κ, corresponding to different

– 7 –
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Figure 2. Left panel: The plaquette expectation value at fixed values of the lattice coupling

βL = 4/g2

bare
as functions of the hopping parameter κ for the theory with adjoint representation

fermions. The measurements are done using 104 lattices. Right panel: Same as left, but for the

fundamental representation fermions.

quark masses, with volumes 244 and 324. In addition, we made exploratory runs with

volumes 84 and 104, but we did not use these volumes for spectroscopy. For each case

the number of hybrid Monte Carlo trajectories was 100-1100, depending strongly on the

quark mass. The evolution timestep ∆τ was 0.02 for larger values of the quark mass and

was decreased down to 0.003 closer to the zero mass limit. The number of integration

steps Ns was chosen so that the trajectory length Ns × δτ ∼ O(1). The most demanding

simulations were at βL = 2.2 and 2.5 near the zero quark mass limit, and also at βL = 1.9

at the smallest quark mass reached. At these points we discard up to 200-300 trajectories

for thermalisation, whereas at larger quark masses 10–30 trajectories were sufficient. For

comparison we also performed simulations with SU(2) gauge group and two flavours of

fundamental representation quarks, using βL = 1.7 and 2.5. Some of the early results of

this study have appeared in [23].

As briefly discussed in the introduction, we investigate how the phenomena of chiral

symmetry in the continuum emerges from the lattice which has no such symmetry to begin

with. The standard way is to study the critical line κc(βL), defined as the line where

the quark mass (as defined in eq. (2.8)) vanishes. If there is chiral symmetry breaking,

along this line the pseudoscalar “pions” become massless Goldstone bosons, whereas other

hadrons remain massive. If mQ > 0 (κ < κc(β)), the mass of the pseudoscalars is ∝ √
mQ.

Locating this critical line allows us to sketch a possible phase diagram of the lattice theory.

However, in practice the simulations become progressively more difficult the smaller

the quark mass is. This is due to the appearance of very small eigenvalues of the fermion

matrix, which finally make the inversion of the matrix impossible. This becomes more

severe in large volumes. In order to better understand the phase diagram, we performed a

set of simulations on a relatively small 104 lattice. In the left panel of figure 2 we show the

– 8 –
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Figure 3. Left panel: The physical (PCAC) quark massmQ as a function of the hopping parameter

κ for the theory with adjoint representation quarks. Right panel: Same as left but for fundamental

representation fermions.

results for the measurement of the plaquette expectation value as a function of κ at fixed

lattice coupling βL = 4/g2
bare in SU(2) gauge theory with adjoint fermions. The results

show clear signs of a discontinuity for values of βL smaller than βL,c ∼ 2, while at larger

couplings we obtain a smooth curve. Even with this volume it turns out to be very difficult

to make simulations at very close proximity to the jump. On the other hand, at larger

values of βL it is possible to do simulations at all values of κ. We take this to be an

indication of a first order phase transition for βL < βL,c ∼ 2, at which point there possibly

is a critical point where the transition ends. Signs of this kind of behaviour were also seen

in [18].

This observation can be contrasted with the case of fundamental representation

fermions: we have performed the measurements for the same range of βL in the case

of fundamental fermions and the results are shown in the right panel of figure 2. In com-

parison with adjoint fermions, we find considerably smaller discontinuity (or possibly no

discontinuity at all) at small values of βL. We note that a first order phase transition at

small values of the lattice coupling βL has also been seen in standard SU(3) lattice QCD

with Wilson fermions; for a recent review, see [24]. These first order transitions are lattice

artifacts, not present in the continuum theory.2

We measure the quark masses and the hadron spectroscopy from larger lattice volumes,

244 or in some cases 324. In left and right panels of figure 3 we show mQ, measured

using eq. (2.8), as functions of the hopping parameter κ for different values of βL for the

adjoint representation quarks and for the fundamental representation quarks, respectively.

For the adjoint representation, at small βL <∼ 1.9 we are not able to reach very small

quark masses, because the first order phase transition in left panel of figure 2 occurs

2The first order transition line presumably ends at a critical point, which may correspond to some kind

of continuum physics. This is unlikely to be the desired continuum gauge theory, however.
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at κ-values which correspond to non-zero quark masses.3 At this point the measured

PCAC quark masses abruptly jump to negative values (measured from smaller volumes;

not shown on the plot). This behaviour has been observed to happen also in standard

SU(3) lattice QCD with Wilson quarks [24]. On the other hand, at larger βL we observe

no particular problems in simulating with κ-values corresponding even to negative quark

masses. Naturally, simulations at very small quark masses still require very short update

step in HMC trajectories. We observe qualitatively similar behaviour for fundamental

representation quarks.

We are now in position to sketch the phase diagram for the adjoint theory in figure 4.

The critical line κc(βL) is defined as the line where the quark mass vanishes. In the weak

coupling limit βL = 0 it has the value κ = 1/4 and extends towards κ = 1/8 at βL = ∞. In

the small-βL -region, where the first order transition prevents us from reaching very small

quark masses, we nevertheless extrapolate its location. (This is done only for illustration;

we do not need it in subsequent analysis.) The first order line appears to terminate at

a critical point roughly at βL,c ∼ 2, above which the behaviour appears to be regular

as mQ = 0 -limit is passed. The location of this critical point is conjectural; we cannot

numerically exclude a very weak first order transition extending to much higher values of

βL, possibly to infinity. However, the abruptness with which the discontinuity vanishes in

our simulations may suggest the existence of a genuine critical point. We remind that the

theory is asymptotically free, thus, the lattice continuum limit is at βL → ∞, unless there

exists a critical point at finite βL leading to non-trivial infrared physics.

We conjecture that the first order transition leads into so-called Aoki phase, which is a

strong lattice coupling artifact for Wilson fermions [25–27]. In this phase flavour symmetry

and parity are spontaneously broken. Our observations confirm the behaviour established

in the earlier studies at smaller volumes [18]. We note that the lattice phase diagram of the

theory with fundamental SU(2) representation quarks is expected to have similar features

to the adjoint quark one, with the possible exception of the missing first order transition

at small βL.

With these results in mind, let us now consider the measurements of the mass spectrum

and their implications. In figure 5 we show the pseudoscalar quark-antiquark meson (”π”)

mass as a function of the PCAC quark mass mQ. For strong bare coupling, i.e. small βL,

we find that the pseudoscalar mass is proportional to
√
mQ. This is the expected behaviour

in the presence of chiral symmetry breaking, if the pseudoscalar is the Goldstone boson of

the broken symmetry. Consistently with this behaviour the vector meson (“ρ”) mass has

a finite intercept for these same βL values; the results for the vector mass are shown in

figure 6. However, as βL is increased above βL ∼ 2, the location of the possible critical

point, there is a qualitative change: the pseudoscalar and vector meson masses now appear

linearly proportional to mQ, and very nearly degenerate.

As an alternative way to plot these results, in figure 7 we show the pseudoscalar-

vector mass ratio mπ/mρ for the theory with adjoint fermions. The close degeneracy of

3However, note that at βL = 1.3 we are able to reach κ = 0.235, which is substantially beyond the

location of the transition at κ ≈ 0.22. This is presumably due to the large metastability of the first order

transition at large volume.
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q
 > 0

m
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Figure 4. The phase diagram on (βL, κ) -plane for the adjoint theory. Solid circles denote the

measured (and extrapolated for βL ≤ 1.9) critical hopping parameters κc(βL), where mQ = 0. At

βL <∼ 2 there appears a 1st order phase transition, which ends at a critical point shown by open

square. The phase structure above the critical line is a conjecture, and it can be more complex

than shown here. The Aoki phase may exist also for values larger than βL ∼ 2.
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Figure 5. Pseudoscalar (“π”) mass for the adjoint representation quark theory at different values

of βL. The dotted line is a fit ∝ √
mQ to the mass measurements at βL ≤ 1.9 and mQa ≤ 0.5.

the pseudoscalar and vector meson masses at large βL is evident. In figure 8 we show the

mass ratio of the three quark state with spin 1/2 (“proton”) and the vector meson ρ. We

can observe that the mass ratio becomes flatter, and quite close to the value 1.5, as βL is

increased. The spin-3/2 three-quark state is almost degenerate with the spin-1/2 state.
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Figure 6. Vector meson (“ρ”) mass for the adjoint representation quark theory.
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Figure 7. The ratio of the pseudoscalar and vector meson masses for the adjoint representation

quarks at fixed values of βL. The near degeneracy of the masses at large βL is evident.

How to interpret these results? At large βL (small bare coupling) all measured masses

in the adjoint quark theory are approximately proportional to mQ. This behaviour is

certainly compatible with a scale invariant behaviour at or near an infrared fixed point [28].

At small βL we observe chiral symmetry breaking mass pattern, but we cannot quite reach

the zero quark mass limit because of the first order phase transition at small mQ. If the

theory has an exact IR fixed point, the large βL region has no chiral symmetry breaking.

This region presumably ends at the critical point where the line of first order transitions
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Figure 8. The ratio of the mass of the spin-1/2 three quark state (“proton”) and the vector meson

mass, mP /mρ.
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Figure 9. Same as figure 7 but for fundamental representation quarks.

start. In this case the first order transition is probably a lattice artifact not present in the

continuum theory.

However, this interpretation should be taken with care: as discussed in the intro-

duction, qualitatively similar behaviour may arise even in the theory with fundamental

fermions where the coupling is QCD-like, asymptotically free and running and the theory

is in the chiral symmetry breaking phase. For comparison, in figure 9 we show the ratio

of the pseudoscalar and the vector meson masses in the SU(2) theory with fundamental
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fermions. The result is qualitatively very similar to the adjoint representation case in

figure 7. In this case the reason for this behaviour is easy to interpret: at small βL we

observe the standard chiral symmetry breaking pattern, but at large βL the lattice spacing

a becomes so small that the chiral symmetry breaking scale is much smaller than 1/a, and

in order to see the chirally broken mass pattern very small values of mQa are required.

This movement to small mQa can be seen in figure 9. Finally, if βL is sufficiently large

and the lattice size is kept constant in lattice units, the physical size of the lattice may be-

come so small that the system becomes effectively deconfined (L smaller than the hadron

size). This leads to behaviour which appears almost conformal at small mQ. However,

in this case we know that the chiral symmetry breaking appears at arbitrarily large βL,

provided that the lattice volume is large enough and the resolution of the measurements

is sufficiently high. Thus, the value of βL where the apparent chiral symmetry restoration

happens should depend on the system size, with faster evolution of the running coupling

giving stronger volume dependence.

Thus, the behaviour in SU(2) gauge theory with adjoint representation quarks is in

major features quite similar to the one with fundamental representation quarks, and it

may be tempting to assume that the physics is similar too. However, there is an important

difference which suggest to us that the adjoint fermion theory may be qualitatively different,

namely the abruptness of the change in behaviour at βL ≈ 2, and its stability as the volume

is changed. In our range of volumes 84–324, on βL = 2.2 lattices we observe no clear signs

of chiral symmetry breaking, whereas at βL = 1.9 we already see the first order phase

transition. The stability of the critical point shown in figure 4 supports the view that

it remains at infinite volume limit. If there is no chiral symmetry breaking on the weak

coupling (large βL) side of the critical point, the continuum theory does not possess it

either. This would be compatible with the infrared fixed point behaviour. Naturally, our

numerical results cannot exclude the possibility of chiral symmetry breaking even at large

βL; it may just evade detection within our accuracy and accessible volumes. We discuss

the implications of our results in more detail below.

4 Conclusions and outlook

We have investigated the strong coupling dynamics of SU(2) gauge theory with two fermion

flavours in the adjoint representation of the gauge group. The aim of the study has been

to determine whether this theory could provide a concrete example of (infrared) conformal

or almost conformal theory. Phenomenologically such behaviour would be useful in the

application to dynamical electroweak symmetry breaking, also known as walking techni-

color, or some other beyond Standard model phenomenology like unparticle physics. We

have determined the schematic phase diagram of the lattice theory and discussed its im-

plications for continuum physics and also compared with the corresponding results in the

case of fundamental representation fermions. Furthermore, we have analysed the spectrum

of this theory. Even though the spectrum may be argued to present evidence in support

of conformal behaviour, these arguments need to be treated with care. By comparing to

similar measurements carried out for two flavours of fermions in the fundamental represen-
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tation, we have shown that it is not possible to rule out the possibility of these behaviours

being due to finite volume artifacts. Definitive answer about the scale dependence of the

coupling constant can only be provided by a dedicated measurement of the β-function of

this theory.

Nevertheless, even without such measurement we can discuss how the results presented

here can be contrasted with the evolution of the coupling. There are various options for

asymptotically free coupling:

I) QCD-like running coupling: the continuum limit is at βL → ∞, and there is spon-

taneous chiral symmetry breaking in the mQ → 0 limit. However, at large βL the

lattice volumes required to observe the chiral symmetry breaking are prohibitively

large. At too small volumes the theory may look almost conformal. However, be-

cause the chiral symmetry restoration is a finite volume and quark mass effect, we

can expect that at least some of the chiral observables should show clear volume

dependence, which we did not observe in this study.

II) IR fixed point: if βL is large enough, at long distances the theory flows into the IR

fixed point and there is no chiral symmetry breaking. The formal continuum limit

is still at βL → ∞. The observed chiral symmetry breaking at small βL is a lattice

artifact not connected to continuum physics.

III) Walking coupling: while this belongs to the same universality class as case I (and thus

has chiral symmetry breaking), depending on the degree of “walking” it interpolates

between cases I and II. Thus, it can be very hard to distinguish from either of the

cases above. We can obtain this behaviour from case II by adding a small mass to

the quarks, for example.

If we allow for β(g) > 0, corresponding to the dashed-dotted line on the right side of

the fixed point in figure 1, there is also a further option corresponding to the free electric

phase of the theory. In this domain the theory is not asymptotically free and for small βL,

the theory flows into the IR fixed point and there is no chiral symmetry breaking. Since the

continuum limit in this case is at βL → 0, our results show that the consistent continuum

limit does not exist due to the observed onset of chiral symmetry breaking at βL ∼ 2. Of

course, it is possible that chiral symmetry is broken in the free electric phase leading to

even more exotic scenarios for the β-function than the three sketched in figure 1: there

could be multiple zeros, corresponding to nontrivial fixed points both in the infrared and

ultraviolet. In such a case it would be possible to reach continuum also for β > 0. Also,

yet another logical possibility would be a single zero of second order, or even non-analytic

behaviour of the β-function at the IR fixed point.

Thus, in the light of the obervation that the chiral symmetry breaking appears to

vanish immediately as βL >∼ 2, whereas just below this value we observe chirally broken

mass pattern and a first order phase transition at small mQ, we conclude that the QCD-

like running coupling (case I above) is less likely than near or exactly infrared conformal

evolution of the coupling.
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To summarise, we have determined the lattice phase diagram and the excitation spec-

trum of SU(2) gauge field theory with two flavours of adjoint representation quarks. Our

results support earlier studies performed on smaller lattices and add more solid evidence

in favor of the absence of chiral symmetry breaking in this theory in the continuum. How-

ever, we have emphasized that due to possible finite volume effects, the measurement of the

spectrum is not alone sufficient to fully resolve the type of the evolution of the coupling con-

stant. Nevertheless, these results provide an important ingredient for direct measurements

of the full non-perturbative β-function in the future.
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(JSC). Parts of the code are derived from the MILC collaboration’s public lattice gauge

theory code [29].

References

[1] F. Sannino, Dynamical stabilization of the Fermi scale: phase diagram of strongly coupled

theories for (minimal) walking technicolor and unparticles, arXiv:0804.0182 [SPIRES].

[2] H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260]

[SPIRES].

[3] H. Georgi, Another odd thing about unparticle physics, Phys. Lett. B 650 (2007) 275

[arXiv:0704.2457] [SPIRES];

K. Cheung, W.-Y. Keung and T.-C. Yuan, Collider signals of unparticle physics,

Phys. Rev. Lett. 99 (2007) 051803 [arXiv:0704.2588] [SPIRES].

[4] F. Sannino and R. Zwicky, Unparticle & Higgs as composites,

Phys. Rev. D 79 (2009) 015016 [arXiv:0810.2686] [SPIRES].

[5] S. Weinberg, Implications of dynamical symmetry breaking: an addendum,

Phys. Rev. D 19 (1979) 1277 [SPIRES];

L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory,

Phys. Rev. D 20 (1979) 2619 [SPIRES].

[6] E. Eichten and K.D. Lane, Dynamical breaking of weak interaction symmetries,

Phys. Lett. B 90 (1980) 125 [SPIRES].

[7] C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking,

Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].

[8] B. Holdom, Raising the sideways scale, Phys. Rev. D 24 (1981) 1441 [SPIRES].

[9] K. Yamawaki, M. Bando and K.-I. Matumoto, Scale invariant technicolor model and a

technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES].

– 16 –

http://arxiv.org/abs/0804.0182
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0182
http://dx.doi.org/10.1103/PhysRevLett.98.221601
http://arxiv.org/abs/hep-ph/0703260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,98,221601
http://dx.doi.org/10.1016/j.physletb.2007.05.037
http://arxiv.org/abs/0704.2457
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.2457
http://dx.doi.org/10.1103/PhysRevLett.99.051803
http://arxiv.org/abs/0704.2588
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.2588
http://dx.doi.org/10.1103/PhysRevD.79.015016
http://arxiv.org/abs/0810.2686
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.2686
http://dx.doi.org/10.1103/PhysRevD.19.1277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D19,1277
http://dx.doi.org/10.1103/PhysRevD.20.2619
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D20,2619
http://dx.doi.org/10.1016/0370-2693(80)90065-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B90,125
http://dx.doi.org/10.1016/S0370-1573(03)00140-6
http://arxiv.org/abs/hep-ph/0203079
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0203079
http://dx.doi.org/10.1103/PhysRevD.24.1441
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D24,1441
http://dx.doi.org/10.1103/PhysRevLett.56.1335
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,56,1335


J
H
E
P
0
5
(
2
0
0
9
)
0
2
5

[10] T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral hierarchies and the flavor

changing neutral current problem in technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES];

T. Appelquist, A. Ratnaweera, J. Terning and L.C.R. Wijewardhana, The phase structure of

an SU(N) gauge theory with N(f) flavors, Phys. Rev. D 58 (1998) 105017

[hep-ph/9806472] [SPIRES].

[11] T.A. Ryttov and F. Sannino, Supersymmetry inspired QCD β-function,

Phys. Rev. D 78 (2008) 065001 [arXiv:0711.3745] [SPIRES].

[12] T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless

fermions, Nucl. Phys. B 196 (1982) 189 [SPIRES].

[13] D.R.T. Jones, Charge renormalization in a supersymmetric Yang-Mills theory,

Phys. Lett. B 72 (1977) 199 [SPIRES].

[14] L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4 Yang-mills

Theory, Phys. Lett. B 123 (1983) 323 [SPIRES].

[15] K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and

electric-magnetic duality, Nucl. Phys. 45BC (Proc. Suppl.) (1996) 1 [hep-th/9509066]

[SPIRES].

[16] F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking,

Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [SPIRES];

D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher

representations versus electroweak precision measurements: predictions for LHC,

Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [SPIRES];

D.D. Dietrich and F. Sannino, Walking in the SU(N), Phys. Rev. D 75 (2007) 085018

[hep-ph/0611341] [SPIRES].

[17] S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504

[arXiv:0705.1664] [SPIRES];

L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical

simulations. SU(2) with adjoint fermions, arXiv:0805.2058 [SPIRES].

[18] S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of

dynamical adjoint quarks, JHEP 11 (2008) 009 [arXiv:0807.0792] [SPIRES].

[19] Y. Shamir, B. Svetitsky and T. DeGrand, Zero of the discrete β-function in SU(3) lattice

gauge theory with color sextet fermions, Phys. Rev. D 78 (2008) 031502 [arXiv:0803.1707]

[SPIRES].

[20] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Probing technicolor theories

with staggered fermions, arXiv:0809.4890 [SPIRES]; Nearly conformal electroweak sector

with chiral fermions, arXiv:0809.4888 [SPIRES].

[21] T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of the conformal window in

QCD-like theories, Phys. Rev. Lett. 100 (2008) 171607 [arXiv:0712.0609] [SPIRES].

[22] F. Karsch and M. Lutgemeier, Deconfinement and chiral symmetry restoration in an SU(3)

gauge theory with adjoint fermions, Nucl. Phys. B 550 (1999) 449 [hep-lat/9812023]

[SPIRES].

[23] A. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, Spectrum of SU(2) gauge

theory with two fermions in the adjoint representation, PoS(LATTICE 2008)065

[arXiv:0810.3722] [SPIRES].

– 17 –

http://dx.doi.org/10.1103/PhysRevLett.57.957
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,57,957
http://dx.doi.org/10.1103/PhysRevD.58.105017
http://arxiv.org/abs/hep-ph/9806472
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9806472
http://dx.doi.org/10.1103/PhysRevD.78.065001
http://arxiv.org/abs/0711.3745
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.3745
http://dx.doi.org/10.1016/0550-3213(82)90035-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B196,189
http://dx.doi.org/10.1016/0370-2693(77)90701-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B72,199
http://dx.doi.org/10.1016/0370-2693(83)91210-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B123,323
http://arxiv.org/abs/hep-th/9509066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ,45BC,1
http://dx.doi.org/10.1103/PhysRevD.71.051901
http://arxiv.org/abs/hep-ph/0405209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D71,051901
http://dx.doi.org/10.1103/PhysRevD.72.055001
http://arxiv.org/abs/hep-ph/0505059
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0505059
http://dx.doi.org/10.1103/PhysRevD.75.085018
http://arxiv.org/abs/hep-ph/0611341
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0611341
http://dx.doi.org/10.1103/PhysRevD.76.034504
http://arxiv.org/abs/0705.1664
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.1664
http://arxiv.org/abs/0805.2058
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.2058
http://dx.doi.org/10.1088/1126-6708/2008/11/009
http://arxiv.org/abs/0807.0792
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0792
http://dx.doi.org/10.1103/PhysRevD.78.031502
http://arxiv.org/abs/0803.1707
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.1707
http://arxiv.org/abs/0809.4890
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4890
http://arxiv.org/abs/0809.4888
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4888
http://dx.doi.org/10.1103/PhysRevLett.100.171607
http://arxiv.org/abs/0712.0609
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.0609
http://dx.doi.org/10.1016/S0550-3213(99)00129-7
http://arxiv.org/abs/hep-lat/9812023
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/9812023
http://arxiv.org/abs/0810.3722
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.3722


J
H
E
P
0
5
(
2
0
0
9
)
0
2
5

[24] K. Jansen, Lattice QCD: a critical status report, arXiv:0810.5634 [SPIRES].

[25] S. Aoki, Numerical evidence for a parity violating phase in lattice QCD with Wilson fermion,

Phys. Lett. B 190 (1987) 140 [SPIRES].

[26] S.R. Sharpe and J. Singleton, Robert L., Spontaneous flavor and parity breaking with Wilson

fermions, Phys. Rev. D 58 (1998) 074501 [hep-lat/9804028] [SPIRES].

[27] L. Del Debbio, M.T. Frandsen, H. Panagopoulos and F. Sannino, Higher representations on

the lattice: perturbative studies, JHEP 06 (2008) 007 [arXiv:0802.0891] [SPIRES].

[28] F. Sannino, Conformal chiral dynamics, arXiv:0811.0616 [SPIRES].

[29] See http://physics.utah.edu/˜detar/milc.html.

– 18 –

http://arxiv.org/abs/0810.5634
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.5634
http://dx.doi.org/10.1016/0370-2693(87)90855-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B190,140
http://dx.doi.org/10.1103/PhysRevD.58.074501
http://arxiv.org/abs/hep-lat/9804028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/9804028
http://dx.doi.org/10.1088/1126-6708/2008/06/007
http://arxiv.org/abs/0802.0891
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.0891
http://arxiv.org/abs/0811.0616
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.0616
http://physics.utah.edu/~detar/milc.html

	Introduction and summary
	The model and lattice formulation
	Results
	Conclusions and outlook

